Numerical Predictions of the Generated Work in an Air-Compression Chamber Driven by an Oscillating Water Column

نویسنده

  • E. G. Bautista
چکیده

In the present work, we have studied the performance of an open compression chamber with compressed air and driven by an oscillating water column. Recognizing the existence of a free-surface for the water column, the interface position between the trapped-air and water volume -together with the motion of the column-, is described by a non-linear energy equation that reflects the main dynamic characteristics. The above governing equation is posed in dimensionless form and solved by conventional numerical methods. In addition, a theoretical approximation of the first order in to predict the resonant frequency of the oscillatory system is derived to complete the analysis. The numerical results of the above governing equation serve us to estimate the dimensionless work done by the oscillating water column as a function of three dimensionless parameters: a characteristic Froude number, , and two equivalent quasi-geometric parameters, and , defined below. The predictions show that the influence of the geometry and the involved physical parameters exert a great influence on work generation into the air-chamber.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEM-FDM modeling of water free surface interaction with trapped air in OWC chamber for calculating generated power

Free surface modeling plays an important role in some ocean structures design, especially in Oscillating Water Column (OWC) devices. Boundary element method (BEM) is a suitable method for free surface modeling due to its simplicity, quick solving, and low data storage requirement. In this paper, BEM was used for free surface modeling in OWC chamber and out of it. Linear kinematic and dynamic bo...

متن کامل

Numerical simulation of Ramin's combustion chamber to investigate the factors affecting the production of carbon monoxide and nitrogen oxide

The boiler is one of the most vulnerable parts of a power plant, which is responsible for producing steam for moving turbines.  In order to increase the thermal efficiency of the power plant, it is necessary to prevent heat loss in the boiler combustion chamber and simultaneously control the environmental pollutant parameters such as NOx and CO.  Failure to control environmental pollutants will...

متن کامل

Numerical Analysis of Wells Turbine for Wave Power Conversion

Article history: Received 26.04.2012. Received in revised form 17.07.2012. Accepted 17.07.2012. Sea wave energy is one of the high potential renewable energy sources. The Wells turbine as the main part of Oscillating Water Column energy plant is analyzed in this paper. The Wells turbine uses air flow produced by the pressure change inside the oscillating water column. Efficient energy transform...

متن کامل

Experimental Assessment of a Fixed On-Shore Oscillating Water Column Device: Case Study on Oman Sea

Ocean wave is one of the renewable energy resources that these days various devices are used to extract its energy. Oscillating Water Column (OWC) installed on the shore is one of the wave energy absorption systems which has received attention due to its simple structure. Investigation of the pneumatic power is of great importance in such systems as the conversion of wave energy to pneumatic en...

متن کامل

Control Strategy of an Impulse Turbine for an Oscillating Water Column-Wave Energy Converter in Time-Domain Using Lyapunov Stability Method

Abstract: We present two control strategies for an oscillating water column-wave energy converter (OWC-WEC) in the time domain. We consider a fixed OWC-WEC on the open sea with an impulse turbine module. This system mainly consists of a chamber, turbine and electric generator. For the time domain analysis, all of the conversion stages considering mutualities among them should be analyzed based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009